Rare b decays at LHGb

Rare Processes and Precision Frontier Townhall Meeting
October 2 2020

a minimal introduction ...

- FCNC process can occur only via quantum-loop transitions strong suppression due to CKM hierarchy $\rightarrow \mathcal{B} \sim 10^{-6}-10^{-10}$
- New Physics contribution can arise at the same level of or larger than SM

• Many results already presented on Monday (see slides <u>here</u>)

... and a glimpse of the detector and upgrades

- Large $pp \to b\bar{b}X$ cross section
- $b\bar{b}$ produced at low angle \rightarrow forward spectrometer
- b-hadrons produced with large boost → excellent vertex resolution for background reduction
 - Excellent muon identification ($\varepsilon_{\mu} = 98\%$) and low misID $\varepsilon_{h \to \mu} \sim 0.5\%$
 - High trigger efficiency on B decays with muons $(\varepsilon_{\mu} \sim 90\%)$
 - Well suited for $b \to s\ell\ell$ analyses

Preparing the detector for a bright future!

Purely leptonic rare decays

LHCb PRL 118, 191801 (2017)

• Theoretically clean, additionally suppressed by helicity
$$\Re_{SM}(B_s^0 \to \mu^+ \mu^-) = (3.66 \pm 0.14) \times 10^{-9}$$
• $\Re_{SM}(B_s^0 \to \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$

•
$$\mathscr{B}_{SM}(B^0 \to \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$$

LHCb results @ Run1+1.4fb⁻¹:

•
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$$

•
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10} @ 95\% CL$$

• Main systematics from f_s/f_d and BF of normalisation mode

• At 300fb^{-1} (with conservative assumption on sys $\sim 4\%$):

•
$$\Delta \mathcal{B}(B_s^0 \to \mu \mu) \sim 0.16 \times 10^{-9}$$

•
$$\sigma(\mathcal{B}(B^0 \to \mu\mu)/\mathcal{B}(B_s^0 \to \mu\mu)) \sim 10\%$$

LHC combination

• Combination of the measurements from ATLAS, CMS, and LHCb based on Run-1 and 2016 data samples:

•
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.69 + 0.37)_{-0.35} \times 10^{-9}$$

•
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 1.9 \times 10^{-10} @ 95\% CL$$

• Compatibility with the SM in 2D: 2.1σ

Prospects for $B_s^0 \to \mu^+ \mu^-$

present status $BR(B_s \rightarrow \mu\mu)$ 1.0 3.5 4.0 m_A (TeV)

Altmannshofer et al. JHEP05(2017)076

- In MSSM $\mathcal{B}(B_s^0 \to \mu\mu) \propto \tan^6 \beta / m_A^4$
- With full Run1+Run2 $\sigma(\mathcal{B}(B_s^0 \to \mu\mu))/\mathcal{B}(B_s^0 \to \mu\mu) \sim 14\%$ can be reached \to Together with ATLAS and CMS $\sigma(\mathcal{B}(B_s^0 \to \mu\mu))/\mathcal{B}(B_s^0 \to \mu\mu) \sim 7\%$, which is the expected uncertainty at the end of Run4 for LHCb only
- Complementary to direct searches of ττ resonances

Electroweak penguins: an example

$$\begin{split} \frac{1}{\mathrm{d}(\Gamma + \overline{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma + \overline{\Gamma})}{\mathrm{d}\overline{\Omega}} &= \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K \right. \\ &\quad + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell \\ &\quad - F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi \\ &\quad + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi \\ &\quad + \frac{4}{3} A_{FB} \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \\ &\quad + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right] \end{split}$$

- F_L, A_{FB}, S_i depend on $C_7 C_9$ and C_{10} and FF \rightarrow large uncertainty at leading order
- Re-parametrisation of the angular coefficients with reduced dependency on FF

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

$B^0 \to K^{*0} \mu\mu$ angular analysis prospects

• For C_9 , C_{10} form factor uncertainties cause saturation at $\sim 30 \, \text{fb}^{-1} \rightarrow \text{Will need theory to improve}$

• Large data set @Upgrade II, (~440 000 fully reconstructed $B^0 \to K^{*0} \mu^+ \mu^-$ decays), it will make possible a precise determination of the angular observables in narrow bins of q^2 or using a q^2 -unbinned approach

Probing C7

- $b \rightarrow s\gamma$ transition rates proportional to C_7
- photon polarisation mainly LH
- BF's, CP asymmetries and photon polarisation precision improves with 300fb⁻¹
- Access also to $b \to d\gamma$ with larger CP asymmetry expected
- Alternative way to measure photon polarisation is to use $b \to se^+e^-$ decays at very low q^2 $(B \to K^*e^+e^-)$

Backup

JHEP 1307 (2013) 77

$B_s^0 \to \mu^+ \mu^-$ effective lifetime

- With 300fb⁻¹ precise measurement of additional observables: effective lifetime $\tau_{\mu\mu}^{\rm eff}$ and time-dependent CP-asymmetry $S_{\mu\mu}$
- Both sensitive to (pseudo-)scalar contribution, (CP)CS
 - Recent LHCb measurement: $\tau_{\mu\mu}^{\text{eff}} = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$
 - Run5-6: $\sigma(\tau_{\mu\mu}^{\text{eff}}) \sim 2\%$
- Assuming a tagging power ~3.7%, $S_{\mu\mu}$ @Run5-6:
 - $\sigma(S_{\mu\mu}) \sim 0.2$
- with a tagging power of ~8% and current analysis performance
 - $\sigma(S_{\mu\mu}) \sim 0.1$

Straub JHEP 05 (2017) 076

$B_s^0 \to \mu^+ \mu^-$ effective lifetime

- With 300fb⁻¹ precise measurement of additional observables: effective lifetime $\tau_{\mu\mu}^{\rm eff}$ and time-dependent CP-asymmetry $S_{\mu\mu}$
- Both sensitive to (pseudo-)scalar contribution, (C_P)C_S
 - Recent LHCb measurement: $\tau_{\mu\mu}^{\text{eff}} = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$
 - Combined with CMS: $\tau_{\mu\mu} = 1.91^{+0.37}_{-0.35} \text{ ps}$
 - Run5-6: $\sigma(\tau_{\mu\mu}^{\text{eff}}) \sim 2 \%$
- Assuming a tagging power $\sim 3.7\%$, $S_{\mu\mu}$ @Run5-6:
 - $\sigma(S_{\mu\mu}) \sim 0.2$
- with a tagging power of ~8% and current analysis performance
 - $\sigma(S_{\mu\mu}) \sim 0.1$

$B_{(s)}^0 \to \mu^+ \mu^-$ projections

[LHCB-PUB-2018-009] [ATL-PHYS-PUB-2018-005] [CMS PAS FTR-14-013/-015]

Upgrade and plans

- Preparing the upgrade for Run3 and Run4 during LS2
 - Full software trigger and new readout system, all detector at 40MHz (32 Tbps throughput)
 - Replace tracking detectors + PID + VELO, $\mathcal{L} = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
 - Consolidate PID, tracking and ECAL during LS3
- Phase-II upgrade during LS4:
 - New detector technologies, $\mathcal{L} = 1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Lepton Flavour Universality tests

- $b \rightarrow s\ell\ell$ processes excellent probe to test for LUV effects
- $R_{K^{(*)}}$ is close to unity in SM, with very small uncertainties
- Extremely clean test:
 - cancellation of hadronic form-factors uncertainties in predictions
 - Possible deviation from QED corrections $\sim 1\%$ below $c\overline{c}$ resonance Bordone, Isidori, Pattori EPJC(2016)76:440
- Electrons are very challenging @LHCb!

$$R_{H} = \frac{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{d\Gamma[B \to H\mu^{+}\mu^{-}]}{dq^{2}} dq^{2}}{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{d\Gamma[B \to He^{+}e^{-}]}{dq^{2}} dq^{2}}$$

Electrons

- Triggered on large energy deposit on calorimeter
- Electron ID based on calorimetric information
- Selection is a factor ~3 less efficient than muons
- Boosted *b*-hadrons from LHC collision: most electron emit hard bremsstrahlung photon

 Magnet
 - momentum resolution heavily affected.

Int.J.Mod.Phys. A 30, 1530022 (2015)

$B^+ \to K^+ \ell^- \ell^-$ LFU tests

Phys. Rev. Lett. 122 (2019) 191801

• Use of double ratio to further reduce systematics:

$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to J/\psi \, (\to \mu^+ \mu^-) K^+)} / \frac{\mathcal{B}(B^+ \to K^+ e^+ e^-)}{\mathcal{B}(B^+ \to J/\psi \, (\to e^+ e^-) K^+)}$$

$B^+ \to K^+ \ell^- \ell^- \text{crosschecks}$

• Crosschecks universality in $c\overline{c}$ resonances in all kinematic regions $\mathcal{R}(R^+ \to I)u(\to u^+u^-)K^+$

$$r_{J/\psi} = \frac{\mathcal{B}(B^+ \to J/\psi(\to \mu^+ \mu^-)K^+)}{\mathcal{B}(B^+ \to J/\psi(\to e^+ e^-)K^+)} = 1$$

• Can also test that R_K measured at the $\psi(2S)$ is 1

$$R_{\psi(2S)} = \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(\mu^+ \mu^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))} / \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(e^+ e^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))} = 0.986 \pm 0.013 \text{ (stat + syst)}$$

Phys. Rev. Lett. 122 (2019) 191801

$B^+ \to K^+ \ell^- \ell^-$ LFU tests

• Measurement with 2011-2016 (~5 fb⁻¹ at $\sqrt{s} = 7.8$ and 13 TeV) in central q² bin [1-6]GeV²

$$R_K = 0.846^{+0.060+0.016}_{-0.054-0.014}$$

- Yield of ~766 $B^+ \to K^+ e^+ e^-$ events vs ~1943 $B^+ \to K^+ \mu^+ \mu^-$ driving the total uncertainty:
 - ▶ 7% statistical error vs 2% systematic
- R_K is found to be lower than 1 by ~15%
 - Still compatible with the SM at 2.5σ level!

Phys. Rev. Lett. 122 (2019) 191801

$B^0 \to K^{*0} \mathcal{E}^+ \mathcal{E}^-$ LFU tests

- Results use Run1 data ~3fb⁻¹ of integrated luminosity
- Precision of ~17% in both bins, statistically dominated
- Upcoming Run1+Run2 analysis expected to reduce uncertainty by a factor ~2

$$R_{K^*} = \begin{cases} 0.66^{+0.11}_{-0.07}(\text{stat})^{+0.03}_{-0.05}(\text{syst}) & \text{for } 0.045 < q^2 < 1.1 \text{ GeV}^2/c^4 \\ 0.69^{+0.11}_{-0.07}(\text{stat})^{+0.05}_{-0.05}(\text{syst}) & \text{for } 1.1 < q^2 < 6.1 \text{ GeV}^2/c^4 \end{cases}$$

LFU test with baryons

JHEP 05 (2020) 040

- First test of LU with b-baryons, using $\Lambda_b^0 \to pK\ell^+\ell^-$ decays, analogous to $R(K^{(*)})$, expected to be unity in the SM [Fuentes-Martin et al.]
- Analysis performed using Run1 + 2016 dataset
- Region considered for the measurement: $m(pK^-) < 2.6 \text{ GeV}/c^2$ and $0.1 < q^2 < 6 \text{ GeV}^2/c^4$
- Efficiency crosschecked with resonant J/ψ component in $6 < q^2 < 11 \text{ GeV}^2/c^4$

LFU test with baryons

JHEP 05 (2020) 040

• First observation of $\Lambda_b^0 \to pKe^+e^-$ with more than 7σ

$$\mathcal{B}(\Lambda_b^0 \to pKe^+e^-)\Big|_{0.1 < q^2 < 6\text{GeV}^2/c^4} = (3.1 \pm 0.4 \pm 0.2 \pm 0.3 \pm 0.4) \times 10^{-7}$$

$$\mathcal{B}(\Lambda_b^0 \to pK\mu^+\mu^-) \Big|_{0.1 < q^2 < 6 \text{GeV}^2/c^4} = (2.65 \pm 0.14 \pm 0.12 \pm 0.29 \pm_{0.23}^{0.38}) \times 10^{-7}$$

$$R_{pK}\Big|_{0.1 < q^2 < 6 \text{GeV}^2/c^4} = 0.86^{+0.14}_{-0.11} \pm 0.05$$

Prospects for R_X measurements in LHCb

- Precision driven by the electron mode and projection based on the current performances
- *R_K* hitting QED uncertainty during Run 6
- Higher statistics will give access to additional observables such as R_{π}

R_X precision	Run 1 result	$9\mathrm{fb}^{-1}$	$23\mathrm{fb}^{-1}$	$50\mathrm{fb}^{-1}$	$300{\rm fb}^{-1}$
R_K	$0.745 \pm 0.090 \pm 0.036$ [274]	0.043	0.025	0.017	0.007
$R_{K^{*0}}$	$0.69 \pm 0.11 \pm 0.05 \ \overline{[275]}$	0.052	0.031	0.020	0.008
R_{ϕ}		0.130	0.076	0.050	0.020
R_{pK}	_	0.105	0.061	0.041	0.016
R_{π}	_	0.302	0.176	0.117	0.047

Test of LFU with $B^0_{(s)} \rightarrow e^+ e^-$ decays

- Helicity suppressed by $\mathcal{O}(10^{-4})$ relative to $B_{(s)}^0 \to \mu^+ \mu^-$
- $\mathcal{B}(B_s^0 \to e^+e^-) = (8.35 \pm 0.39) \times 10^{-14}$
- $\mathcal{B}(B^0 \to e^+e^-) = (2.39 \pm 0.14) \times 10^{-15}$ M. Beneke et al. JHEP 10 (2019) 232
- NP effects could increase BFs by $\mathcal{O}(10^6)$
- Current analysis performed on Run1+2015+2016 data
- Signal extracted from UML fit on $m_{e^+e^-}$
 - $\mathcal{B}(B_s^0 \to e^+e^-) < 11.2 \times 10^{-9} \text{ at } 95\% \text{ CL}$
 - $\mathscr{B}(B^0 \to e^+e^-) < 3.0 \times 10^{-9} \text{ at } 95\% \text{ CL}$

Fleischer et al., JHEP 05 (2017) 156

Prospects

- $B_s^0 \to e^+e^-$ already probing possible LUV scenarios
- Potential backgrounds like $B_s^0 \to e^+e^-\gamma$ might become relevant with larger statistics
- Electron reconstruction/PID unknown after UpgradeII
- Also $B_{(s)}^0 \to \tau^+ \tau^-$ even if far from SM expectations still powerful tool to constraint NP Leptoquark models

 Phys. Rev. D 94, 115021 (2016)
- Run1: $\mathcal{B}(B_{(s)}^0 \to \tau^+ \tau^-) < 6.8 \times 10^{-3} @ 95 \% CL$
- 300 fb-1: $\mathcal{B}(B_{(s)}^0 \to \tau^+ \tau^-) < 2.6 5 \times 10^{-4} @ 95 \% CL$

